RRshika
contestada


[tex]The \: value \: of \: \sqrt{6 + \sqrt{6 + \sqrt{6} + .......... \: to \: \infin } } \: is \: \underline{ \: \: \: \: \: \: \: \: \: \: \: .}[/tex]
CORRECT EXPLANATION WILL BE MARK AS BRAINLIEST.​

Respuesta :

[tex]\large\underline{\sf{Solution-}}[/tex]

Let us assume that:

[tex] \sf \longmapsto x = \sqrt{6 + \sqrt{6 + \sqrt{6 + ... \infty } } } [/tex]

We can also write it as:

[tex] \sf \longmapsto x = \sqrt{6 + x } [/tex]

Squaring both sides, we get:

[tex] \sf \longmapsto {x}^{2} =6 + x[/tex]

[tex] \sf \longmapsto {x}^{2} - x - 6 =0[/tex]

By splitting the middle term:

[tex] \sf \longmapsto {x}^{2} - 3x + 2x - 6 =0[/tex]

[tex] \sf \longmapsto x(x - 3) + 2(x - 3 ) =0[/tex]

[tex] \sf \longmapsto (x+ 2)(x - 3 ) =0[/tex]

Therefore:

[tex] \longmapsto\begin{cases} \sf (x+ 2) =0 \\ \sf (x - 3) = 0 \end{cases}[/tex]

[tex] \sf \longmapsto x = - 2,3[/tex]

But x cannot be negative.

[tex] \sf \longmapsto x = 3[/tex]

Therefore, the value of the expression is 3.

[tex]\large\underline{\sf{Verification-}}[/tex]

Given:

[tex]\sf\longmapsto x=3[/tex]

We can also write it as:

[tex]\sf\longmapsto x = \sqrt{9}[/tex]

[tex]\sf\longmapsto x = \sqrt{6+3}[/tex]

[tex]\sf\longmapsto x = \sqrt{6 + \sqrt{9}}[/tex]

[tex]\sf\longmapsto x = \sqrt{6 + \sqrt{6+3}}[/tex]

[tex]\sf\longmapsto x = \sqrt{6 + \sqrt{6+\sqrt{9}}}[/tex]

[tex]\sf\longmapsto x = \sqrt{6 + \sqrt{6+\sqrt{6+3}}}[/tex]

This pattern will continue.

[tex]\sf\longmapsto x = \sqrt{6 + \sqrt{6+\sqrt{6+...\infty}}}[/tex]