Respuesta :

Answer:

If a+b+c=1,

a

2

+

b

2

+

c

2

=

2

,

a

3

+

b

3

+

c

3

=

3

then find the value of

a

4

+

b

4

+

c

4

=

?

we know

2

(

a

b

+

b

c

+

c

a

)

=

(

a

+

b

+

c

)

2

(

a

2

+

b

2

+

c

2

)

2

(

a

b

+

b

c

+

c

a

)

=

1

2

2

=

1

a

b

+

b

c

+

c

a

=

1

2

given

a

3

+

b

3

+

c

3

=

3

a

3

+

b

3

+

c

3

3

a

b

c

+

3

a

b

c

=

3

(

a

+

b

+

c

)

(

a

2

+

b

2

+

c

2

a

b

b

c

c

a

)

+

3

a

b

c

=

3

(

a

+

b

+

c

)

(

a

2

+

b

2

+

c

2

(

a

b

+

b

c

+

c

a

)

+

3

a

b

c

=

3

(

1

×

(

2

(

1

2

)

+

3

a

b

c

)

)

=

3

(

2

+

1

2

)

+

3

a

b

c

=

3

3

a

b

c

=

3

5

2

=

1

2

a

b

c

=

1

6

Now

(

a

2

b

2

+

b

2

c

2

+

c

2

a

2

)

=

(

a

b

+

b

c

+

c

a

)

2

2

a

b

2

c

2

b

c

2

a

2

c

a

2

b

=

(

a

b

+

b

c

+

c

a

)

2

2

a

b

c

(

b

+

c

+

a

)

=

(

1

2

)

2

2

×

1

6

×

1

=

1

4

1

3

=

1

12

Now

a

4

+

b

4

+

c

4

=

(

a

2

+

b

2

+

c

2

)

2

2

(

a

2

b

2

+

b

2

c

2

+

c

2

a

2

)

=

2

2

2

×

(

1

12

)

=

4

+

1

6

=

4

1

6

Extension

a

5

+

b

5

+

c

5

=

(

a

3

+

b

3

+

c

3

)

(

a

2

+

b

2

+

c

2

)

[

a

3

(

b

2

+

c

2

)

+

b

3

(

c

2

+

a

2

)

+

c

3

(

a

2

+

c

2

)

]

=

3

2

[

a

3

(

b

2

+

c

2

)

+

b

3

(

c

2

+

a

2

)

+

c

3

(

a

2

+

b

2

)

]

Now

a

3

(

b

2

+

c

2

)

+

b

3

(

c

2

+

a

2

)

+

c

3

(

a

2

+

b

2

)

=

a

2

b

2

(

a

+

b

)

+

b

2

c

2

(

b

+

c

)

+

c

2

a

2

(

a

+

c

)

=

a

2

b

2

(

1

c

)

+

b

2

c

2

(

1

a

)

+

c

2

a

2

(

1

b

)

=

a

2

b

2

+

b

2

c

2

+

c

2

a

2

(

a

2

b

2

c

+

b

2

c

2

a

+

c

2

a

2

b

)

=

1

12

a

b

c

(

a

b

+

b

c

+

c

a

)

=

1

12

1

6

(

1

2

)

=

0

So

a

5

+

b

5

+

c

5

=

6

0

=

6

Step-by-step explanation: