Respuesta :

Answer:

Length of the diameter of the circle = 10 units long

Step-by-step explanation:

Given points A (0, -7) and B (8, -1):

We can determine the diameter of the circle by solving for the distance between the two given points.

We'll use the following distance formula:

[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} }[/tex]

Let [tex](x_{1}, y_{1})[/tex] = (0, -7)

     [tex](x_{2}, y_{2})[/tex] = (8, -1)

Plug in these values into the distance formula

[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} }[/tex]

[tex]d = \sqrt{(8 - 0)^{2} + (-1 - (-7))^{2} }[/tex]

[tex]d = \sqrt{(8)^{2} + (-1 + 7)^{2} }[/tex]

[tex]d = \sqrt{(8)^{2} + (6)^{2} }[/tex]

[tex]d = \sqrt{64 + 36}[/tex]

[tex]d = \sqrt{100}[/tex]

d = 10

Therefore, the distance between points A and B is 10 units long.