Respuesta :

Answer:

The second option

Step-by-step explanation:

First, simplify the bracket

[tex] \frac{4r {}^{3} s {}^{2} t {}^{4} }{2r {}^{4} st {}^{6} } [/tex]

Apply Quotient of Powers

[tex]2 {r}^{ - 1} s {t}^{ - 2} [/tex]

Which equals

[tex] \frac{2s}{rt {}^{2} } [/tex]

Raise this to the fifth power

[tex] \frac{32s {}^{5} }{ {r}^{5} t {}^{10} } [/tex]

Multiply by the outsides numbers(5^r^6 and t^4

[tex] \frac{160 {}^{} r {}^{6}s {}^{5} t {}^{4} }{r {}^{5} t {}^{10} } [/tex]

[tex]160r {}^{5} t {}^{ - 6} [/tex]

[tex] \frac{160r {}^{}s {}^{5} }{t {}^{6} } [/tex]