Respuesta :
Question:
∠1 and ∠2 are supplementary angles. m∠1 is 4y+7, and m∠2 is 9y+4. Find m∠2.
Solution:
The sum of supplementary angle is 180°
First, solve for the value of y.
- ∠1 + ∠2 = 180°
- (4y + 7) + (9y + 4) = 180°
- 13y + 11 = 180°
- 13y = 180° - 11
- 13y = 169/13
- y = 13°
Then, plug and substitute the value y = 13 to find the m∠2.
- m∠2
- 9y + 4
- 9(13) + 4
- 117 + 4
- 121
Answer:
- The angle of m∠2 is 121
The measure of angle 2 is 121 degrees.
Given:
[tex]m\angle1=4y+7\\m\angle2=9y+4[/tex]
Recall: Supplementary angles are angles whose sum equals [tex]180^{o}[/tex]
To solve this problem, create an equation to find the value of x:
Thus:
[tex]m\angle1 +m\angle2=180[/tex]
Therefore:
[tex](4y+7)+(9y+4) = 180\\[/tex]
Solve for y:
[tex]4y+7+9y+4 = 180\\\\[/tex]
Add like terms:
[tex]13y+11 = 180\\\\[/tex]
Subtract 11 from both sides
[tex]13y+11 - 11= 180 - 11\\13y = 169[/tex]
Divide both sides by 13
[tex]\frac{13y}{13} = \frac{169}{13} \\y = 13[/tex]
Find the m∠2 by substituting [tex]y = 13[/tex] into [tex]9y +4[/tex]
[tex]m\angle= 9(13)+4\\m\angle = 121^{o}[/tex]
Therefore, m∠2 = 121 degrees.
Learn more about supplementary angles here:
https://brainly.com/question/18175975