Respuesta :

Answer:

-4/7

Explanation:

Given the following

A=4i-10j and B= 7i+5j

A+ bB = 4i-10j + (7i+5j)b

A+ bB =  4i-10j + 7ib+5jb

A+ bB =

The vector along the x-axis is expressed as i + 0j

If the vector A+ bB is pointing in the direction of the x-axis then;

[tex]A+ bB * \frac{i+0j}{|i+0j|} = 0 \\ (4+7b)i-(10-5b)j* \frac{i+0j}{\sqrt{1^2+0^2} } = 0\\(4+7b)i-(10-5b)j *(i+0j) = 0\\4+7b-0 =0\\7b=-4\\b = -4/7[/tex]

Hence the value of b is -4/7

The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.

According to the statement, we have following system of vectorial equations:

[tex]\vec A = 4\,\hat {i} - 10\,\hat{j}[/tex] (1)

[tex]\vec {B} = 7\,\hat{i} + 5\,\hat{j}[/tex] (2)

[tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] (3)

By applying (1) and (2) in (3):

[tex](4\,\hat{i}-10\,\hat{j}) + \beta\cdot (7\,\hat{i}+5\,\hat{j}) = c\,\hat{i}[/tex]

[tex](4+7\cdot \beta)\,\hat{i} +(-10+5\cdot \beta)\,\hat{j} = c\,\hat{i}[/tex]

And we get two scalar equations after analyzing each component:

[tex]4+7\cdot \beta = c[/tex] (4)

[tex]-10+5\cdot \beta = 0[/tex] (5)

We solve for [tex]\beta[/tex] in (5):

[tex]\beta = 2[/tex]

And for [tex]c[/tex] in (4):

[tex]c = 4+7\cdot (2)[/tex]

[tex]c = 18[/tex]

The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.

Please see this question related to Sum of Vectors for further details: https://brainly.com/question/11881720