Respuesta :
Answer:
-4/7
Explanation:
Given the following
A=4i-10j and B= 7i+5j
A+ bB = 4i-10j + (7i+5j)b
A+ bB = 4i-10j + 7ib+5jb
A+ bB =
The vector along the x-axis is expressed as i + 0j
If the vector A+ bB is pointing in the direction of the x-axis then;
[tex]A+ bB * \frac{i+0j}{|i+0j|} = 0 \\ (4+7b)i-(10-5b)j* \frac{i+0j}{\sqrt{1^2+0^2} } = 0\\(4+7b)i-(10-5b)j *(i+0j) = 0\\4+7b-0 =0\\7b=-4\\b = -4/7[/tex]
Hence the value of b is -4/7
The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.
According to the statement, we have following system of vectorial equations:
[tex]\vec A = 4\,\hat {i} - 10\,\hat{j}[/tex] (1)
[tex]\vec {B} = 7\,\hat{i} + 5\,\hat{j}[/tex] (2)
[tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] (3)
By applying (1) and (2) in (3):
[tex](4\,\hat{i}-10\,\hat{j}) + \beta\cdot (7\,\hat{i}+5\,\hat{j}) = c\,\hat{i}[/tex]
[tex](4+7\cdot \beta)\,\hat{i} +(-10+5\cdot \beta)\,\hat{j} = c\,\hat{i}[/tex]
And we get two scalar equations after analyzing each component:
[tex]4+7\cdot \beta = c[/tex] (4)
[tex]-10+5\cdot \beta = 0[/tex] (5)
We solve for [tex]\beta[/tex] in (5):
[tex]\beta = 2[/tex]
And for [tex]c[/tex] in (4):
[tex]c = 4+7\cdot (2)[/tex]
[tex]c = 18[/tex]
The value of [tex]\beta[/tex] such that [tex]\vec C = \vec A + \beta \cdot \vec B = c\,\hat{i}[/tex] is 2.
Please see this question related to Sum of Vectors for further details: https://brainly.com/question/11881720