Answer:
[tex]r'(t) = 298t -850[/tex]
Step-by-step explanation:
Given
[tex]q(t) = 1000t - 150t^2[/tex]
[tex]p(t) = 150t - t^2[/tex]
Required
[tex]r'(t)[/tex]
First, we calculate the revenue
[tex]r(t) = p(t) - q(t)[/tex]
So, we have:
[tex]r(t) = 150t - t^2 - (1000t - 150t^2)[/tex]
Open bracket
[tex]r(t) = 150t - t^2 - 1000t + 150t^2[/tex]
Collect like terms
[tex]r(t) = 150t^2 - t^2 + 150t - 1000t[/tex]
[tex]r(t) = 149t^2 -850t[/tex]
Differentiate to get the revenue change with time
[tex]r'(t) = 2 * 149t -850[/tex]
[tex]r'(t) = 298t -850[/tex]