Answer:
The hydrogen sample has a pressure of 0.957 atmospheres.
Explanation:
Let consider that the hydrogen sample behaves ideally, the equation of state for ideal gases is:
[tex]P\cdot V = n\cdot R_{u}\cdot T[/tex] (1)
Where:
[tex]P[/tex] - Pressure, in atmospheres.
[tex]V[/tex] - Volume, in liters.
[tex]n[/tex] - Molar quantity, in moles.
[tex]T[/tex] - Temperature, in Kelvin.
[tex]R_{u}[/tex] - Ideal gas constant, in atmosphere-liters per mole-Kelvin.
If we know that [tex]V = 19.1\,L[/tex], [tex]n = 0.684\,mol[/tex], [tex]T = 326\,K[/tex] and [tex]R_{u} = 0.082\,\frac{atm\cdot L}{mol\cdot K}[/tex], then the pressure of the hydrogen sample is:
[tex]P = \frac{n\cdot R_{u}\cdot T}{V}[/tex]
[tex]P = \frac{(0.684\,mol)\cdot \left(0.082\,\frac{atm\cdot L}{mol\cdot K} \right)\cdot (326\,K)}{19.1\,L}[/tex]
[tex]P = 0.957\,atm[/tex]
The hydrogen sample has a pressure of 0.957 atmospheres.