20 points PLEASE HELP IT'S DUE TODAY

Answer:
Step-by-step explanation:
Arc length of the circle is given by,
Arc length = [tex]\frac{\theta}{360^{\circ}}(2\pi r)[/tex]
Area of the sector of a circle = [tex]\frac{\theta}{360^{\circ}}(2\pi r)[/tex]
22). Arc length of the circle having central angle = [tex]\frac{\pi}{3}[/tex]
= 60°
Arc length = [tex]\frac{60^{\circ}}{360^{\circ}}(2\pi )(7)[/tex]
= [tex]\frac{14\pi }{6}[/tex]
= 7.33 cm
23). Arc length of the circle having central angle = 225°
Arc length = [tex]\frac{225^{\circ}}{360^{\circ}}(2\pi )(10)[/tex]
= 12.5π
= 39.27 km
24). Central angle = [tex]\frac{5\pi }{4}[/tex]
= [tex]\frac{5\times 180^{\circ}}{4}[/tex]
= 225°
Area of the sector = [tex]\frac{225^{\circ}}{360^{\circ}}(2\pi )(11)[/tex]
= 43.20 yd²
25). Area of the sector = [tex]\frac{270^{\circ}}{360^{\circ}}(2\pi )(14)[/tex]
= 65.97 yd²