Respuesta :

Answer:

The last line is

[tex]x = 7 + - \sqrt{30} [/tex]

The roots of f(x) are 7+root 30 and 7 -root 30.

We have given that the quadratic equation is

[tex]f(x)=x^2-14x+19[/tex]

We have to find the zeros of the given f(x)

Compaire the given equation with the general form of quadratic equation

What is the  general form of quadratic equation?

[tex]ax^2+bx+c=0[/tex]

So we get,a=1,b=-14,c=19

We find the roots by using the quadratic formula method

What is the quadratic formula ?

[tex]x_{1,2}=\frac{-b\±\sqrt{b^2-4ac} }{2a}[/tex]

Use the value of a,b and c in above formula we get,

[tex]x_{1,2}=\frac{-(-14)\±\sqrt{(-14)^2-4(1)(19)} }{2(1)}[/tex]

[tex]x_{1,\:2}=\frac{-\left(-14\right)\pm \:2\sqrt{30}}{2\cdot \:1}[/tex]

[tex]x_1=\frac{-\left(-14\right)+2\sqrt{30}}{2\cdot \:1}[/tex]

[tex]=\frac{14+2\sqrt{30}}{2}[/tex]

[tex]=\frac{14+2\sqrt{30}}{2}[/tex]

[tex]=\frac{2\left(7+\sqrt{30}\right)}{2}[/tex]

[tex]=7+\sqrt{30}[/tex]

Similarly, we get,

[tex]x_2=\frac{-\left(-14\right)-2\sqrt{30}}{2\cdot \:1}[/tex]

[tex]x_2=7-\sqrt{30}[/tex]

Therefore the roots of f(x) are 7+root 30 and 7 -root 30.

To learn more about the roots visit:

https://brainly.com/question/2833285