Respuesta :

Answer:The value of log base 3 log base 2 log base √3 81 is -a)1 b) 2 c)3 d) 0

Answer:

4

Step-by-step explanation:

Define [tex]\log_a b=c\implies a^c=b[/tex].

Let

[tex]\log_3 81=x[/tex].

Using our definition [tex]\log_a b=c\implies a^c=b[/tex], we have:

[tex]3^x=81[/tex]

Solving for [tex]x[/tex]:

[tex]x=\boxed{4}\text{ from simply knowing that }3^4=81[/tex]

Or

Algebraically solve step-by-step by taking the log of both sides:

[tex]\log 3^x=\log 81[/tex]

Using log property [tex]\log a^b=b\log a[/tex], rewrite:

[tex]x\log 3=\log81[/tex]

Divide both sides by log(3):

[tex]x=\frac{\log 81}{\log 3}=\boxed{4}[/tex]