Solve the triangle. Round your answers to the nearest tenth. Law of sines 6 A. M∠C=34 m ∠ C = 34 , b=25 b = 25 , c=16 c = 16 B. M∠C=34 m ∠ C = 34 , b=25 b = 25 , c=17 c = 17 C. M∠C=34 m ∠ C = 34 , b=22 b = 22 , c=17 c = 17 D. M∠C=34 m ∠ C = 34 , b=27.9 b = 27.9 , c=16 c = 16

Respuesta :

Answer:

[tex]A = 43.0^o[/tex]

[tex]B = 55.0^o[/tex]

[tex]BC = 20.0[/tex]

Step-by-step explanation:

I will solve this question with the attached triangle

From the attachment, we have:

[tex]\angle C =82^o[/tex]

[tex]AB = 29[/tex]

[tex]AC = 24[/tex]

Required

Solve the triangle

First, we calculate [tex]\angle B[/tex] using sine law:

[tex]\frac{AC}{\sin(B)} = \frac{AB}{\sin(C)}[/tex]

This gives:

[tex]\frac{24}{\sin(B)} = \frac{29}{\sin(82^o)}[/tex]

[tex]\frac{24}{\sin(B)} = \frac{29}{0.9903}[/tex]

Cross multiply

[tex]\sin(B) * 29 = 24 * 0.9903[/tex]

[tex]\sin(B) * 29 = 23.7672[/tex]

Divide both sides by 29

[tex]\sin(B) = 0.8196[/tex]

Take arcsin of both sides

[tex]B = \sin^{-1}(0.8196)[/tex]

[tex]B = 55.0^o[/tex]

Next, calculate [tex]\angle A[/tex] using:

[tex]A + B + C = 180^o[/tex] --- angles in a triangle

[tex]A + 55^o + 82^o = 180^o[/tex]

Collect like terms

[tex]A = 180^o-55.0^o - 82^o[/tex]

[tex]A = 43.0^o[/tex]

Next, calculate BC using sine laws

[tex]\frac{BC}{\sin(A)} = \frac{AB}{\sin(C)}[/tex]

This gives:

[tex]\frac{BC}{\sin(43.0)} = \frac{29}{\sin(82)}[/tex]

[tex]\frac{BC}{0.6820} = \frac{29}{0.9903}[/tex]

Make BC the subject

[tex]BC = \frac{29*0.6820}{0.9903}[/tex]

[tex]BC = 20.0[/tex]

Ver imagen MrRoyal