Respuesta :
Answer:
(a) There is a significant relationship between y and [tex]x_1, x_2, x_3, x_4[/tex]
(b) [tex]SSE_{(x_1 ,x_2 ,x_3 ,x_4) }= 45[/tex]
(c) [tex]SSE_{(x_2,x_3)} = 100[/tex]
(d) [tex]x_1[/tex] and [tex]x_4[/tex] are significant
Step-by-step explanation:
Given
[tex]y = 17.6+3.8x_1 - 2.3x_2 +7.6x_3 +2.7x_4[/tex] --- estimated regression equation
[tex]n = 30[/tex]
[tex]p = 4[/tex] --- independent variables i.e. x1 to x4
[tex]SSR = 1760[/tex]
[tex]SST = 1805[/tex]
[tex]\alpha = 0.05[/tex]
Solving (a): Test of significance
We have:
[tex]H_o :[/tex] There is no significant relationship between y and [tex]x_1, x_2, x_3, x_4[/tex]
[tex]H_a :[/tex] There is a significant relationship between y and [tex]x_1, x_2, x_3, x_4[/tex]
First, we calculate the t-score using:
[tex]t = \frac{SSR}{p} \div \frac{SST - SSR}{n - p - 1}[/tex]
[tex]t = \frac{1760}{4} \div \frac{1805- 1760}{30 - 4 - 1}[/tex]
[tex]t = 440 \div \frac{45}{25}[/tex]
[tex]t = 440 \div 1.8[/tex]
[tex]t = 244.44[/tex]
Next, we calculate the p value from the t score
Where:
[tex]df = n - p - 1[/tex]
[tex]df = 30 -4 - 1=25[/tex]
The p value when [tex]t = 244.44[/tex] and [tex]df = 25[/tex] is:
[tex]p =0[/tex]
So:
[tex]p < \alpha[/tex] i.e. [tex]0 < 0.05[/tex]
Solving (b): [tex]SSE(x_1 ,x_2 ,x_3 ,x_4)[/tex]
To calculate SSE, we use:
[tex]SSE = SST - SSR[/tex]
Given that:
[tex]SSR = 1760[/tex] ----------- [tex](x_1 ,x_2 ,x_3 ,x_4)[/tex]
[tex]SST = 1805[/tex]
So:
[tex]SSE_{(x_1 ,x_2 ,x_3 ,x_4)} = 1805 - 1760[/tex]
[tex]SSE_{(x_1 ,x_2 ,x_3 ,x_4) }= 45[/tex]
Solving (c): [tex]SSE(x_2 ,x_3)[/tex]
To calculate SSE, we use:
[tex]SSE = SST - SSR[/tex]
Given that:
[tex]SSR = 1705[/tex] ----------- [tex](x_2 ,x_3)[/tex]
[tex]SST = 1805[/tex]
So:
[tex]SSE_{(x_2,x_3)} = 1805 - 1705[/tex]
[tex]SSE_{(x_2,x_3)} = 100[/tex]
Solving (d): F test of significance
The null and alternate hypothesis are:
We have:
[tex]H_o :[/tex] [tex]x_1[/tex] and [tex]x_4[/tex] are not significant
[tex]H_a :[/tex] [tex]x_1[/tex] and [tex]x_4[/tex] are significant
For this model:
[tex]y =11.1 -3.6x_2+8.1x_3[/tex]
[tex]SSE_{(x_2,x_3)} = 100[/tex]
[tex]SST = 1805[/tex]
[tex]SSR_{(x_2 ,x_3)} = 1705[/tex]
[tex]SSE_{(x_1 ,x_2 ,x_3 ,x_4) }= 45[/tex]
[tex]p_{(x_2,x_3)} = 2[/tex]
[tex]\alpha = 0.05[/tex]
Calculate the t-score
[tex]t = \frac{SSE_{(x_2,x_3)}-SSE_{(x_1,x_2,x_3,x_4)}}{p_{(x_2,x_3)}} \div \frac{SSE_{(x_1,x_2,x_3,x_4)}}{n - p - 1}[/tex]
[tex]t = \frac{100-45}{2} \div \frac{45}{30 - 4 - 1}[/tex]
[tex]t = \frac{55}{2} \div \frac{45}{25}[/tex]
[tex]t = 27.5 \div 1.8[/tex]
[tex]t = 15.28[/tex]
Next, we calculate the p value from the t score
Where:
[tex]df = n - p - 1[/tex]
[tex]df = 30 -4 - 1=25[/tex]
The p value when [tex]t = 15.28[/tex] and [tex]df = 25[/tex] is:
[tex]p =0[/tex]
So:
[tex]p < \alpha[/tex] i.e. [tex]0 < 0.05[/tex]
Hence, we reject the null hypothesis