Respuesta :

Answer:

I've attached the Answer

Step-by-step explanation:

here it is

Ver imagen legendanonymus22

Answer:

[tex](\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})=3[/tex]

[tex](\sqrt{5}-\sqrt{2})(\sqrt{2}+\sqrt{5})=3[/tex]

Step-by-step explanation:

We want to simplify the expression:

[tex](\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})[/tex]

Notice that this is the difference of two squares pattern. Namely:

[tex]a^2-b^2=(a+b)(a-b)[/tex]

If we let a = √6 and b  =√3, we acquire:

[tex](a+b)(a-b)[/tex]

Expand accordingly:

[tex]=a^2-b^2[/tex]

Back-substitute:

[tex]=(\sqrt{6})^2-(\sqrt{3})^2[/tex]

Simplify:

[tex]=6-3=3[/tex]

For the second expression, we have a similar pattern:

[tex](\sqrt{5}-\sqrt{2})(\sqrt{2}+\sqrt{5})[/tex]

We can first rewrite the expression (commutative property):

[tex]=(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})[/tex]

And if we let a = √5 and b = √2:

[tex]=(a-b)(a+b)[/tex]

Expand accordingly:

[tex]=a^2-b^2[/tex]

Back-substitute and simplify:

[tex]=(\sqrt{5})^2-(\sqrt{2})^2=5-2=3[/tex]