Let U be the universal set, where: U = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 } Let sets A , B , and C be subsets of U , where: A = { 2 , 3 , 5 , 6 , 7 } B = { 1 , 3 , 9 , 10 , 11 , 14 } C = { 5 , 9 , 12 , 13 , 15 }

Respuesta :

fichoh

Answer:

16 elements

0 elements

Step-by-step explanation:

U = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 }

Let sets A , B , and C be subsets of U , where:

A = { 2 , 3 , 5 , 6 , 7 }

B = { 1 , 3 , 9 , 10 , 11 , 14 }

C = { 5 , 9 , 12 , 13 , 15 }

(A U B U C) = elements in either A, or B or C

(A U B U C) = {1,2,3,5,6,7,9,10,11,12,13,14,15}

(A U B U C) n (A U B U C) = elements on both intersecting set ; this will contain the same set as (A U B U C) are the same.

Number of elements = 13

(A n B n C) = elements occurring in both A, B and C

(A n B n C) = {} = empty set

(A n B n C) n (A n B n C) = {} = 0