Answer:
A
Step-by-step explanation:
Sum the product of the components in the first row of A with the corresponding components of the first column in B
Repeat this with the components in the second row of A with the corresponding components of the second column in B, that is
AB
= [tex]\left[\begin{array}{ccc}2&1\\3&4\\\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}3&1\\5&2\\\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}2(3)+1(5)&2(1)+1(2)\\3(3)+4(5)&3(1)+4(2)\\\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}6+5&2+2\\9+20&3+8\\\end{array}\right][/tex]
= [tex]\left[\begin{array}{ccc}11&4\\29&11\\\end{array}\right][/tex] → A