Respuesta :
Answer:
m = - 1
b = 5
Step-by-step explanation:
[tex]slope, m= \frac{2-7}{3--2}= \frac{-5}{5}= -1\\\\equation : (y-y_1)= m(x-x_1)[/tex]
[tex](y-7) = -1(x--2)\\y-7 = -1(x+2)\\y = -1x-2+7\\y= -1x+5[/tex]
[tex]\huge{ \mathfrak{ \underline{ Answer \: \: ✓ }}}[/tex]
Slope of the line :
[tex] \large\boxed{ \mathrm{ \frac{y_2 - y_1 }{x_2 - x_1} }}[/tex]
- [tex] \dfrac{7 - 2}{ - 2 - 3} [/tex]
- [tex] \dfrac{ 5}{ - 5} [/tex]
- [tex] - 1[/tex]
therefore, m = slope = -1
The equation of the line will be :
- y = mx + b
- y = (-1 × x) + b
- y = -x + b
Now, let's plug the value of x and y from coordinates of second point,
- [tex]y = - x + b[/tex]
- [tex]2 = - 3 + b[/tex]
- [tex]b = 5[/tex]
Hence, the required values are :
- [tex] \boxed{m = - 1}[/tex]
- [tex] \boxed{ \: \: \: b = 5 \: \: \: }[/tex]
_____________________________
[tex]\mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]