Answer:
[tex](a)\ y = 0.25n +1[/tex]
[tex](b)\ \$16[/tex]
Step-by-step explanation:
Given
[tex]n \to days[/tex]
[tex]y \to amount[/tex]
[tex](n_1,y_1) = (5,2.25)[/tex]
[tex](n_2,y_2) = (21,6.25)[/tex]
Solving (a): Formula that represents the scenario.
Calculate slope (m)
[tex]m = \frac{y_2 - y_1}{n_2 -n_1}[/tex]
[tex]m = \frac{6.25-2.25}{21-5}[/tex]
[tex]m = \frac{4}{16}[/tex]
[tex]m = 0.25[/tex]
The equation is calculated using:
[tex]y = m(n - n_1) + y_1[/tex]
This gives:
[tex]y = 0.25(n - 5) + 2.25[/tex]
[tex]y = 0.25n - 1.25 + 2.25[/tex]
[tex]y = 0.25n +1[/tex]
Solving (b): Amount after 60 days late.
This means that:
[tex]n = 60[/tex]
So:
[tex]y = 0.25 * 60 + 1[/tex]
[tex]y = 15 + 1[/tex]
[tex]y = 16[/tex]