Respuesta :

Answer:

The probability you will randomly select a green and yellow treat is 2/25 greater than an  orange and yellow treat

Explanation:

Given

Let

[tex]G \to Green[/tex]        [tex]Y \to Yellow[/tex]         [tex]R \to Red[/tex]         [tex]O \to Orange[/tex]

[tex]G\ n\ Y = 20[/tex]        [tex]R\ n\ Y = 14[/tex]           [tex]O\ n\ Y = 16[/tex]

See comment for complete question

Required

How much greater is [tex]P(G\ n\ Y)[/tex] than [tex]P(O\ n\ Y)[/tex]

First, calculate [tex]P(G\ n\ Y)[/tex] and [tex]P(O\ n\ Y)[/tex]

[tex]P(G\ n\ Y) = \frac{G\ n\ Y}{Total}[/tex]

[tex]P(O\ n\ Y) = \frac{O\ n\ Y}{Total}[/tex]

Where

[tex]Total = G\ n\ Y + R\ n\ Y + O\ n\ Y[/tex]

[tex]Total = 20 + 14 + 16[/tex]

[tex]Total =50[/tex]

So:

[tex]P(G\ n\ Y) = \frac{G\ n\ Y}{Total}[/tex]

[tex]P(G\ n\ Y) = \frac{20}{50}[/tex]

[tex]P(G\ n\ Y) = \frac{2}{5}[/tex]

[tex]P(O\ n\ Y) = \frac{O\ n\ Y}{Total}[/tex]

[tex]P(O\ n\ Y) = \frac{16}{50}[/tex]

[tex]P(O\ n\ Y) = \frac{8}{25}[/tex]

Calculate the difference (d) between both

[tex]d = P(G\ n\ Y) - P(O\ n\ Y)[/tex]

[tex]d = \frac{2}{5} - \frac{8}{25}[/tex]

Take LCM

[tex]d = \frac{10-8}{25}[/tex]

[tex]d = \frac{2}{25}[/tex]