Respuesta :

Answer:

[tex]P(x \le 21) = 0.69146[/tex]

Step-by-step explanation:

The missing parameters are:

[tex]n = 64[/tex] --- population

[tex]\mu = 20[/tex] --- population mean

[tex]\sigma = 16[/tex] -- population standard deviation

Required

[tex]P(x \le 21)[/tex]

First, calculate the sample standard deviation

[tex]\sigma_x = \frac{\sigma}{\sqrt n}[/tex]

[tex]\sigma_x = \frac{16}{\sqrt {64}}[/tex]

[tex]\sigma_x = \frac{16}{8}[/tex]

[tex]\sigma_x = 2[/tex]

Next, calculate the sample mean [tex]\bar_x[/tex]

[tex]\bar x = \mu[/tex]

So:

[tex]\bar x = 20[/tex]

So, we have:

[tex]\sigma_x = 2[/tex]

[tex]\bar x = 20[/tex]

[tex]x = 21[/tex]

Calculate the z score

[tex]x = \frac{x - \mu}{\sigma}[/tex]

[tex]x = \frac{21 - 20}{2}[/tex]

[tex]x = \frac{1}{2}[/tex]

[tex]x = 0.50[/tex]

So, we have:

[tex]P(x \le 21) = P(z \le 0.50)[/tex]

From the z table

[tex]P(z \le 0.50) = 0.69146[/tex]

So:

[tex]P(x \le 21) = 0.69146[/tex]