Respuesta :

Answer:

Ex = [tex]2 k q \frac{x}{(x^2 + z^2) ^{3/2}}[/tex] ,  E_z =0

Explanation:

To find the electric field of each charge, let's use

          E = k q / r²

where the field for a positive charge is outgoing and for a negative charge it is incoming.

Since the electric field is a vector magnitude, let's add its components at the point z

X axis

       Eₓ = E₁ₓ + E₂ₓ

       Eₓ = 2 E₁ₓ

Z axis

       E_z = E_{1z} -E_{2z}

       E_z= 0

Let's find the expression for the electric field

the distance from the charge to the test point, using the Pythagorean theorem is

      r² = (x-0) ² + (0-z) ²

      E = [tex]k \frac{q}{x^2 + z^2}[/tex]

with trigonometry we can find its components

      cos θ = E₁ₓ / E

      E₁ₓ = E cos θ

we substitute

     Eₓ = 2 E cos θ

where the cosine

    cos θ = x / r

     Ex = [tex]2 k \frac{q}{x^2 + z^2} \ \frac{x}{\sqrt{x^2 + z^2} }[/tex]

     Ex = [tex]2 k q \frac{x}{(x^2 + z^2) ^{3/2}}[/tex]

     E_z = 0