Answer:
T₂ = 19.95°C
Explanation:
From the law of conservation of energy:
[tex]Heat\ Lost\ by\ Copper = Heat\ Gained\ by\ Water\\m_cC_c\Delta T_c = m_wC_w\Delta T_w[/tex]
where,
mc = mass of copper = 37.2 g
Cc = specific heat of copper = 0.385 J/g.°C
mw = mass of water = 188 g
Cw = specific heat of water = 4.184 J/g.°C
ΔTc = Change in temperature of copper = 99.8°C - T₂
ΔTw = Change in temperature of water = T₂ - 18.5°C
T₂ = Final Temperature at Equilibrium = ?
Therefore,
[tex](37.2\ g)(0.385\ J/g.^oC)(99.8\ ^oC-T_2)=(188\ g)(4.184\ J/g.^oC)(T_2-18.5\ ^oC)\\99.8\ ^oC-T_2 = \frac{(188\ g)(4.184\ J/g.^oC)}{(37.2\ g)(0.385\ J/g.^oC)}(T_2-18.5\ ^oC)\\\\99.8\ ^oC-T_2 = (54.92) (T_2-18.5\ ^oC)\\54.92T_2+T_2 = 99.8\ ^oC + 1016.02\ ^oC\\\\T_2 = \frac{1115.82\ ^oC}{55.92}[/tex]
T₂ = 19.95°C