Respuesta :

Answer:

The gradient of the line passing through the points (4·a, -a) and (6·a, 5·a) is 3

Step-by-step explanation:

The gradient of a (straight) line given the 'x' and 'y' coordinates of two points on the line, (x₁, y₁), and (x₂, y₂) can be found using the following formula;

[tex]The \ gradient \ of \ a \ line, \, m =\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

The coordinates of two points on the given line are;

(4·a, -a), and (6·a, 5·a)

Therefore, we get;

[tex]The \ gradient \ of \ the \ line =\dfrac{5\cdot a-(-a)}{6 \cdot a-4 \cdot a} = \dfrac{6\cdot a}{2 \cdot a} = 3[/tex]

The gradient of the line = 3.