Respuesta :

Answer:

[tex]Pr = 0.833[/tex]

Step-by-step explanation:

Given

A roll of a pair of dice

Required

The probability of getting different numbers

First, list out the sample space;

We have:

[tex]S = \{(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6),(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6),[/tex]

[tex](3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6),(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)[/tex]

 [tex](5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6), (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)\}[/tex]

The total is:

[tex]Total = 36[/tex]

The outcomes of the different numbers are:

[tex]Different = \{(1, 2) (1, 3) (1, 4) (1, 5) (1, 6),(2, 1) (2, 3) (2, 4) (2, 5) (2, 6),[/tex]

[tex](3, 1) (3, 2)(3, 4) (3, 5) (3, 6),(4, 1) (4, 2) (4, 3) (4, 5) (4, 6)[/tex]

[tex](5, 1) (5, 2) (5, 3) (5, 4) (5, 6), (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) \}[/tex]

The total is:

[tex]Different = 30[/tex]

So, the probability of having a different outcome is:

[tex]Pr = \frac{Different}{Total}[/tex]

[tex]Pr = \frac{30}{36}[/tex]

[tex]Pr = 0.833[/tex]