Respuesta :

Answer:

[tex]\displaystyle \angle A=30^\circ[/tex]

Step-by-step explanation:

We are given that in Circle O, Arc BAC measures 300°.

Recall that arc lengths will always total 360°. Therefore:

[tex]\stackrel{\frown}{BAC}+\stackrel{\frown}{CB}=360^\circ[/tex]

By substitution:

[tex]300+\stackrel{\frown}{CB}=360[/tex]

Thus:

[tex]\stackrel{\frown}{CB}=60^\circ[/tex]

∠A intercepts Arc CB. Since it is an inscribed angle, it will be half of its intercepted arc. In other words:

[tex]\angle A=\displaystyle \frac{1}{2}\stackrel{\frown}{CB}[/tex]

Therefore:

[tex]\displaystyle \angle A=\frac{1}{2}(60)=30^\circ[/tex]