Answer:
[tex]P(1) = 0.23[/tex]
[tex]P(5) = 0.0809[/tex]
[tex]P(x\ge 2) = 0.471[/tex]
Step-by-step explanation:
Given
[tex]P(x) = 0.23 * 0.77^{x-1}[/tex]
Solving (a): P(1)
This gives:
[tex]P(x) = 0.23 * 0.77^{x-1}[/tex]
[tex]P(1) = 0.23 * 0.77^{1-1}[/tex]
[tex]P(1) = 0.23 * 0.77^0[/tex]
[tex]P(1) = 0.23 * 1[/tex]
[tex]P(1) = 0.23[/tex]
Solving (b): P(5)
This gives:
[tex]P(x) = 0.23 * 0.77^{x-1}[/tex]
[tex]P(5) = 0.23 * 0.77^{5-1}[/tex]
[tex]P(5) = 0.23 * 0.77^{4}[/tex]
[tex]P(5) = 0.23 * 0.35153041[/tex]
[tex]P(5) = 0.0809[/tex]
Solving (c): [tex]P(x \ge 2)[/tex]
To do this, we make use of complement rule
[tex]P(x \ge 2) = 1 - P(x < 2)[/tex]
[tex]P(x < 2)[/tex] is calculated as:
[tex]P(x < 2) = P(0) +P(1)[/tex]
Calculate P(0)
[tex]P(x) = 0.23 * 0.77^{x-1}[/tex]
[tex]P(0) = 0.23 * 0.77^{0-1}[/tex]
[tex]P(0) = 0.23 * 0.77^{-1}[/tex]
[tex]P(0) = 0.299[/tex]
In (a):
[tex]P(1) = 0.23[/tex]
So:
[tex]P(x < 2) = P(0) +P(1)[/tex]
[tex]P(x < 2) = 0.299 + 0.23[/tex]
[tex]P(x < 2) = 0.529[/tex]
So:
[tex]P(x \ge 2) = 1 - P(x < 2)[/tex]
[tex]P(x\ge 2) = 1 - 0.529[/tex]
[tex]P(x\ge 2) = 0.471[/tex]