A Rectangular box with square base and open at the top is to have a capacity of 16,823 cu.cm. Find the height of the box that requires minimum amount of the material required.

a. 14.12cm

b. 16.14cm

c. 12.13cm

d. 10.36cm

Respuesta :

let the side of base =x and height=h
 
[tex]hx^2=16,823[/tex] so [tex]x=\sqrt{\frac{16,823}{h}}[/tex]
 
surface area of the box = S(x)= x
² +4xh
 
to find the minimum we calculate the first derivative
S'(x) = 2x + 4h
this is minimum for S'(x) =0
 
2x + 4h = 0 replace x by its value..
[tex]2\sqrt{\frac{16,823}{h}}+4h=0[/tex]
[tex]4h=-2\sqrt{ \frac{16,823}{h} }
[/tex] square both sides
 
[tex]16h^2=4\frac{16,823}{h}[/tex] cross multiply
 
[tex]h^3=
4\frac{16,823}{16}[/tex]
 
so 
[tex]h=\sqrt[3]{\frac{16,823}{4}} =16.14 \text{ cm}[/tex]