Respuesta :

Answer:

[tex]a=-\frac{1}{8}[/tex]

Step-by-step explanation:

Given

See attachment for graph

Required

Write the vertex form and then solve for

The general equation is:

[tex]y = a(x - h)^2 + k[/tex]

From the attachment, the vertex is at:

[tex](h,k) = (24,50)[/tex]

i.e.

[tex]h = 24; k= 50[/tex]

Considering point:

[tex](x,y) = (4,0)[/tex]

i.e.

[tex]x=4;y=0[/tex]

Substitute these values in [tex]y = a(x - h)^2 + k[/tex]

[tex]0 = a(4 - 24)^2 + 50[/tex]

[tex]0 = a(- 20)^2 + 50[/tex]

[tex]0 =a(400) + 50[/tex]

[tex]0 = 400a + 50[/tex]

Solve for a

[tex]400a = -50[/tex]

Make a the subject

[tex]a=-\frac{50}{400}[/tex]

[tex]a=-\frac{1}{8}[/tex]

Ver imagen MrRoyal

Answer:

y = a(x - h)^2 + k

h = 24, k = 50, x = 4, y = 0

0 = a(4 - 24)^2 + 50

0 = a(-20)^2 + 50

0 = a(400) + 50

0 = 400a + 50

400a = -50

a = - 50/400

a = - 1/8

Step-by-step explanation:

that's what i put copy and paste