Two resistors of resistances R_1 and R_2, with R_2 > R_1, are connected to a voltage source with voltage V_0. When the resistors are connected in series, the current is I_s. When the resistors are connected in parallel, the current I_p from the source is equal to 10I_s.Let r be the ratio R_1/R_2. Find r.

Respuesta :

Solution :

Given two resistors : [tex]$R_1$[/tex] and [tex]$R_2$[/tex]  where [tex]$R_2$[/tex] > [tex]$R_1$[/tex]

When the resistors are connected in series :

Current, [tex]$I_s=\frac{\epsilon}{R_1 + R_2}$[/tex]    .............(1)

When the resistors are connected in series :

[tex]$10I_s=\frac{\epsilon}{\left(\frac{R_1R_2}{R_1+R_2}\right)}$[/tex]

[tex]$10I_s=\frac{\epsilon(R_1+R_2)}{R_1R_2}$[/tex]    ..................(2)

Therefore, dividing equation (2) by (1), we get

[tex]$10=\frac{(R_1+R_2)^2}{R_1R_2}$[/tex]

Now, since [tex]$r=\frac{R_1}{R_2}$[/tex]   ,   we have [tex]$R_1=rR_2$[/tex]

∴  [tex]$10=\frac{(1+r)^2}{r}$[/tex]

   [tex]$\Rightarrow 1+r^2+2r=10r$[/tex]

  [tex]$\Rightarrow r^2-8r+1=0$[/tex]

Solving, we get,  r = 0.127