A cardboard box in the shape of a rectangular prism has the dimensions shown. Write a polynomial in standard form to represent the volume of the box.

Respuesta :

Answer:

[tex]Volume = x^3 +3x^2 -16x +12[/tex]

Step-by-step explanation:

Given [missing from the question].

The dimensions are:

Length =(x + 6), Width = (x - 2) and Height = (x -1)

Required

Represent the volume as a polynomial

Volume is calculated as:

[tex]Volume = Length * Width * Height[/tex]

So:

[tex]Volume = (x + 6) * (x - 2) * (x - 1)[/tex]

Expand

[tex]Volume = (x + 6) * (x^2 -2x -x +2)[/tex]

[tex]Volume = (x + 6) * (x^2 -3x +2)[/tex]

Expand

[tex]Volume = x^3 -3x^2 +2x +6x^2-18x +12[/tex]

Collect like terms

[tex]Volume = x^3 -3x^2+6x^2 +2x -18x +12[/tex]

[tex]Volume = x^3 +3x^2 -16x +12[/tex]