The side lengths of the following right triangle 15,20 and 25, as shown below. The altitude from the right angle splits the hypotenuse into line segments of length x and y. Solve for h,x, and y.

The side lengths of the following right triangle 1520 and 25 as shown below The altitude from the right angle splits the hypotenuse into line segments of length class=

Respuesta :

Answer:

[tex]h = 12[/tex]

[tex]x = 9[/tex]

[tex]y= 16[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

Find h, x and y

Let the base of the triangle be 15.

So, the area is:

[tex]A = \frac{1}{2} * 15 * 20[/tex]

[tex]i.e\ height = 20[/tex]

[tex]A = \frac{1}{2} * 300[/tex]

[tex]A = 150[/tex]

Let the base of the triangle be 25.

So, the area is:

[tex]A = \frac{1}{2} * 25 * h[/tex]

[tex]i.e\ height = h[/tex]

[tex]A = \frac{1}{2} * 25h[/tex]

Substitute [tex]A = 150[/tex]

[tex]\frac{1}{2}*25h = 150[/tex]

Solve for h

[tex]h = \frac{150 *2}{25}[/tex]

[tex]h = 6 *2[/tex]

[tex]h = 12[/tex]

Considering the smallest triangle

[tex]Hypotenuse = 15[/tex]

So:

[tex]15^2 = h^2 + x^2[/tex]

[tex]15^2 = 12^2 + x^2[/tex]

This gives:

[tex]15^2 - 12^2 = x^2[/tex]

[tex]81 = x^2[/tex]

Take square roots

[tex]9 =x[/tex]

[tex]x = 9[/tex]

Solving for y

[tex]x + y = 25[/tex]

[tex]y= 25 - x[/tex]

[tex]y= 25 - 9[/tex]

[tex]y= 16[/tex]