Answer:
The answer is below
Step-by-step explanation:
The z score is used to determine by how many standard deviations the raw score is above or below the mean. The z score is given by:
[tex]z=\frac{x-\mu}{\sigma} \\\\for\ a \ sample(n):\\\\z=\frac{x-\mu}{\sigma/\sqrt{n} }\\\\where\ x=raw\ score,\mu=mean, \sigma=standard deviation[/tex]
Given that n = 49, μ = 260 mg/dL, σ = 35 mg/dL
a) For x < 210:
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} } =\frac{210-260}{35/\sqrt{49} } =-10[/tex]
From the normal distribution table, P(x < 210) = P(z < -10) = 0.0001
b) For x > 205:
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} } =\frac{205-260}{35/\sqrt{49} } =-11[/tex]
For x < 215:
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} } =\frac{215-260}{35/\sqrt{49} } =-9[/tex]
P(205 < x < 215) = P(-11 < z < -9) = P(z < -9) - P(z < -11) = 0.0001 - 0.00001 = 0.00009
c) For x < 200:
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} } =\frac{200-260}{35/\sqrt{49} } =-12[/tex]
From the normal distribution table, P(x < 200) = P(z < -12) = 0.00001
d) For x > 222:
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} } =\frac{222-260}{35/\sqrt{49} } =-7.6[/tex]
From the normal distribution table, P(x > 200) = 1 - P(z < -12) = 1 - 0.0001 = 0.9999