Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identity

tanx = [tex]\frac{1}{cotx}[/tex]

Consider the left side

[tex]\frac{cotA-1}{cotA+1}[/tex] ← divide terms on numerator/denominator by cotA

= [tex]\frac{\frac{cotA}{cotA}-\frac{1}{cotA} }{\frac{cotA}{cotA}+\frac{1}{cotA} }[/tex]

= [tex]\frac{1-tanA}{1+tanA}[/tex]

= right side , thus proven