Solution :
The probabilities are assigned using the empirical probability (experimental).
[tex]$P(A) =P(\text{A rock and B scissor +A scissor and B paper+A paper and B rock})$[/tex]
[tex]$=(0.24\times0.01 + 0.64 \times 0.14 + 0.12 \times 0.85) $[/tex]
= 0.194
[tex]$P(C) =P(\text{both rock + both paper + both scissor})$[/tex]
[tex]$=(0.24\times0.85+ 0.12 \times 0.14 + 0.64 \times 0.01) $[/tex]
= 0.227
[tex]$P(B)=1 - P(A)-P(C)$[/tex]
= 1 - 0.194 - 0.227
= 0.579
≈ 0.58
∴ [tex]$A^C = $[/tex] event of B or event of C
So the probability of [tex]$A^C $[/tex] is 0.81