Respuesta :

Answer:

[tex]2\sqrt{13}[/tex]

Step-by-step explanation:

Lets call the axes x and y.

Distance in x axis is (9 - 5) = 4

Distance in y axis (3 - (-3)) = 6

The total distance is [tex]\sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = \sqrt{4 \cdot 13} = 2\sqrt{13}[/tex]

Answer:

2 sqrt(13)

Step-by-step explanation:

We can use the distance formula

d =sqrt( ( x2-x1)^2 + (y2-y1)^2)

   =sqrt( (-3-3)^2 + ( 5-9)^2)

  = sqrt( (-6)^2 + (-4) ^2)

  = sqrt( 36+ 16)

  = sqrt( 52)

  = sqrt (4 * 13)

  = 2 sqrt(13)