Respuesta :
Answer:
[tex]\displaystyle d = 12[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (3, -8)
Point (3, 4)
Step 2: Identify
x₁ = 3, y₁ = -8
x₂ = 3, y₂ = 4
Step 3: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(3-3)^2+(4+8)^2}[/tex]
- [Distance] [√Radical] (Parenthesis) Subtract/Add: [tex]\displaystyle d = \sqrt{(0)^2+(12)^2}[/tex]
- [Distance] [√Radical] Evaluate exponent: [tex]\displaystyle d = \sqrt{(12)^2}[/tex]
- [Distance] [√Radical] Evaluate/simplify: [tex]\displaystyle d = 12[/tex]