Respuesta :

Space

Answer:

[tex]\displaystyle d = 12[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Algebra II

  • Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Point (3, -8)

Point (3, 4)

Step 2: Identify

x₁ = 3, y₁ = -8

x₂ = 3, y₂ = 4

Step 3: Find distance d

Simply plug in the 2 coordinates into the distance formula to find distance d

  1. Substitute in points [Distance Formula]:                                                         [tex]\displaystyle d = \sqrt{(3-3)^2+(4+8)^2}[/tex]
  2. [Distance] [√Radical] (Parenthesis) Subtract/Add:                                         [tex]\displaystyle d = \sqrt{(0)^2+(12)^2}[/tex]
  3. [Distance] [√Radical] Evaluate exponent:                                                       [tex]\displaystyle d = \sqrt{(12)^2}[/tex]
  4. [Distance] [√Radical] Evaluate/simplify:                                                          [tex]\displaystyle d = 12[/tex]

Answer:

12 units

Step-by-step explanation:

Edgenu ity