Respuesta :
Correct option :
[tex]= \color{plum}\bold{(b) \: 2,700}[/tex]
Steps to derive answer :
Selling price of a bicycle = 2850
Profit percentage = 14%
We know that :
[tex]\color{plum}\tt{Cost \: \: price = \frac{Selling \: \: price \: \times \: 100}{100 \: \: + \: \: profit \: \%} }[/tex]
Then, the cost price of this bicycle :
[tex] = \tt \frac{2850 \times 100}{100 + 14} [/tex]
[tex] = \tt \frac{285000}{114} [/tex]
[tex] =\color{plum} \tt2500[/tex]
Thus, the cost price of this bicycle = 2500
In another scenario :
Profit percentage = 8%
Cost price of the bicycle = 2500
Then, Selling price will be equal to :
Let x be the selling price of the bicycle.
[tex] = \tt2500 = \frac{\: x \: \times 100}{100 + 8} [/tex]
[tex] = \tt2500 = \frac{100x}{108} [/tex]
[tex] =\tt 100x = 2500 \times 108[/tex]
[tex] = \tt100x = 270000[/tex]
[tex] =\tt x = \frac{270000}{100} [/tex]
[tex] =\color{plum}\tt x = 2700[/tex]
Therefore, the selling price with a profit of 8% will be = 2700