Respuesta :

Answer:

this is a required answer.

Ver imagen Аноним

Answer:

See Below.

Step-by-step explanation:

We want to verify:

[tex]\cos(x-y)-\cos(x+y)=2\sin(x)\sin(y)[/tex]

We will utilize the following identities:

[tex]\cos(x-y)=\cos(x)\cos(y)+\sin(x)\sin(y)[/tex]

And:

[tex]\cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y)[/tex]

So, by substitution, we acquire:

[tex](\cos(x)\cos(y)+\sin(x)\sin(y))-(\cos(x)\cos(y)-\sin(x)\sin(y))=2\sin(x)\sin(y)[/tex]

Distribute:

[tex]\cos(x)\cos(y)+\sin(x)\sin(y)-\cos(x)\cos(y)+\sin(x)\sin(y)=2\sin(x)\sin(y)[/tex]

The first and third term will cancel:

[tex]\sin(x)\sin(y)+\sin(x)\sin(y)=2\sin(x)\sin(y)[/tex]

Combine like terms:

[tex]2\sin(x)\sin(y)\stackrel{\checkmark}{=}2\sin(x)\sin(y)[/tex]