∠A and ∠B\angle B ∠B are supplementary angles. If m ∠A=(x−18)∘\angle A=(x-18)^{\circ} ∠A=(x−18) ∘ and m ∠B=(x−20)∘\angle B=(x-20)^{\circ} ∠B=(x−20) ∘ , then find the measure of ∠B\angle B ∠B.

Respuesta :

Given:

∠A and ∠B are supplementary angles.

m∠A=(x−18)° and m∠B=(x−20)°.

To find:

The measure of ∠B.

Solution:

Sum of supplementary angles is always 180 degrees.

∠A and ∠B are supplementary angles. So,

[tex]m\angle A+m\angle B=180^\circ[/tex]

[tex](x-18)^\circ+(x-20)^\circ=180^\circ[/tex]

[tex](2x-38)^\circ=180^\circ[/tex]

[tex]2x-38=180[/tex]

Now,

[tex]2x=180+38[/tex]

[tex]2x=218[/tex]

[tex]x=\dfrac{218}{2}[/tex]

[tex]x=109[/tex]

The measure of angle B is

[tex]m\angle B=(x-20)^\circ[/tex]

[tex]m\angle B=(109-20)^\circ[/tex]

[tex]m\angle B=89^\circ[/tex]

Therefore, the measure of ∠B is 89°.

Answer:

∠B is 89°.

Step-by-step explanation: