Respuesta :
Answer:
A quadratic equation is of the form of [tex]ax^2+bx+c =0[/tex].....[1] where a, b and c are coefficient then, the solution is given by;
[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Given the quadratic equation: [tex]98 -x^2=0[/tex]
On comparing the given equation with equation [1] we have;
a = -1 , b = 0 and c =98
then;
Substitute the given values we have;
[tex]x = \frac{-0\pm\sqrt{0^2-4(-1)(98)}}{2(-1)}[/tex]
or
[tex]x = \frac{\pm \sqrt{4 \cdot (98)}}{-2}[/tex]
Simplify:
[tex]x = \pm \sqrt{98}= \pm 7\sqrt{2}[/tex]
Therefore, the solutions of the given quadratic equation are;
[tex]7\sqrt{2}[/tex], [tex]-7\sqrt{2}[/tex]