g Suppose that the populationy(t)of a certain kind of fish is given by the logistic modely′= 3y−2y2(a) Solve the Bernoulli equation. (Must be done using Bernoulli’s Equation method)(b) Suppose fish are added to the pond at a constant rate of 2 (Basically add 2 to your equation).Set up the Riccati equation, find a particular solution by inspection (it should be obvious if youlook for a constantyfunction), and then solve the equation.

Respuesta :

Answer:

y = [tex]\frac{3}{2 + 3Ce^{-3t} }[/tex]

Step-by-step explanation:

As given , y' = 3y - 2y²

⇒y' - 3y = -2y²

Divide by y² in the above equation

⇒[tex]\frac{y'}{y^{2} } - \frac{3y}{y^{2} } = -\frac{2y^{2} }{y^{2} }[/tex]

⇒[tex]\frac{y'}{y^{2} } - \frac{3}{y } = -2[/tex]       ........(1)

Now , let [tex]\frac{1}{y}[/tex] = u

⇒-[tex]\frac{1}{y^{2} } \frac{dy}{dt} = \frac{du}{dt}[/tex]

⇒-[tex]\frac{1}{y^{2} }y' = \frac{du}{dt}[/tex]

∴ equation (1) becomes

-[tex]\frac{du}{dt}[/tex] - 3u = -2

⇒[tex]\frac{du}{dt}[/tex] + 3u = 2

It is a linear differential equation

Now,

Integrating factor = I.F = [tex]e^{\int\limits {3} \, dt }[/tex] = [tex]e^{3t}[/tex]

∴ The solution becomes

u.(I.F) = [tex]\int\limits {2.(I.F)} \, dt[/tex] + C

⇒u.([tex]e^{3t}[/tex]) = [tex]\int\limits {2.(e^{3t} )} \, dt[/tex] + C

⇒u.([tex]e^{3t}[/tex]) = [tex]\frac{2e^{3t} }{3}[/tex] + C

⇒u = [tex]\frac{2}{3} + Ce^{-3t}[/tex]

As [tex]\frac{1}{y}[/tex] = u

⇒[tex]\frac{1}{y}[/tex]  = [tex]\frac{2}{3} + Ce^{-3t}[/tex]

⇒ y = [tex]\frac{1}{\frac{2}{3} + Ce^{-3t} } = \frac{3}{2 + 3Ce^{-3t} }[/tex]

⇒ y = [tex]\frac{3}{2 + 3Ce^{-3t} }[/tex]