ONE HUNDRED POINTS
Complete the proof.

Below is a drag and drop geometric proof. Complete the proof in your notebook.

Given: A = D

Prove: ACB ~ DCE



Choose from these possible answers:

ONE HUNDRED POINTS Complete the proof Below is a drag and drop geometric proof Complete the proof in your notebook Given A D Prove ACB DCE Choose from these pos class=

Respuesta :

Answer:

See Below.

Step-by-step explanation:

We are given that ∠A = ∠D, and we want to prove that ΔACB ~ ΔDCE.

Statements:                                    Reasons:

[tex]1) \text{ $\angle A=\angle D$}[/tex]                                    [tex]\text{Given}[/tex]

[tex]2) \text{ }\angle BCA=\angle ECD[/tex]                        [tex]\text{Vertical Angles Are Congruent}[/tex]

[tex]3) \text{ } \Delta ACB \sim \Delta DCE[/tex]                        [tex]\text{AA (Angle-Angle) Similarity}[/tex]

Given:

[tex] \angle \: A = \angle D[/tex]

To prove:

ACB ~ DCE

Statement:

Given,

[tex] \bf\angle \: A = \angle D [/tex]

[tex] \bf \angle \: BCA= \angle \: ECD[/tex]

[ vertical angles ]

[tex] \therefore \: ACB \sim DCE[/tex]

Reason:

By AA Criterion of similarity