PLZ HELP ;(((
A line passes through the points (k + 10,-2k – 1) and (2,9) and has a y-intercept
of 10. Find the value of k and the equation of the line.
solve for all 3 equations

Respuesta :

Answer:

The value of k is -4 and the equation of the line is [tex]y =-\frac{1}{2}\cdot x +10[/tex].

Step-by-step explanation:

The equation of the line is defined by the following formula:

[tex]y = m\cdot x + b[/tex] (1)

Where:

[tex]x[/tex] - Independent variable.

[tex]y[/tex] - Dependent variable.

[tex]b[/tex] - y-Intercept.

[tex]m[/tex] - Slope.

In addition, the slope of the equation of the line ([tex]m[/tex]) can be known from two distinct points:

[tex]m = \frac{y-y_{o}}{x-x_{o}}[/tex] (2)

Where [tex]x_{o}[/tex] and [tex]y_{o}[/tex] are the coordinates of the reference point.

By applying (2) in (1), we derive the resulting expression:

[tex]y = \frac{y-y_{o}}{x-x_{o}}\cdot x + b[/tex]

[tex]y\cdot (x-x_{o}) = (y-y_{o})\cdot x + b\cdot (x-x_{o})[/tex]

[tex]x\cdot y -y\cdot x_{o} = x\cdot y -x\cdot y_{o}+b\cdot x -b\cdot x_{o}[/tex]

[tex](b-y)\cdot x_{o} = b\cdot x -x\cdot y_{o}[/tex]

[tex](b-y)\cdot x_{o} +x\cdot y_{o} = b\cdot x[/tex] (3)

If we know that [tex]b = 10[/tex], [tex]x = 2[/tex], [tex]y = 9[/tex], [tex]x_{o} = k+10[/tex] and [tex]y_{o} = -2\cdot k -1[/tex], then the value of [tex]k[/tex] is:

[tex](10-9)\cdot (k+10)+2\cdot (-2\cdot k -1) = (10)\cdot (2)[/tex]

[tex]k+10 -4\cdot k -2 = 20[/tex]

[tex]-3\cdot k +8 = 20[/tex]

[tex]-3\cdot k = 12[/tex]

[tex]k = -4[/tex]

The value of the slope is:

[tex]m = \frac{9-7}{2-6}[/tex]

[tex]m = -\frac{1}{2}[/tex]

The equation of the line is [tex]y =-\frac{1}{2}\cdot x +10[/tex].