Respuesta :

Answer:

The explicit equation is [tex]\mathbf{a_n=5n+3}[/tex]

Option A is correct option.

Step-by-step explanation:

Third term of sequence is 18

Sixth term of sequence is 33

We need to find the explicit equation for the sequence.

The explicit sequence is [tex]a_n=a_1+(n-1)d[/tex]

We need to find a_1 the first term and common difference d

We have a₃=18

We can write it as: [tex]a_3=a_1+(3-1)d\\[/tex]

[tex]18=a_1+2d[/tex]

a₆=33

We can write it as: [tex]a_6=a_1+(6-1)d\\33=a_1+5d[/tex]

Now, solving these equation s we can find value of d

[tex]18=a_1+2d[/tex]

[tex]33=a_1+5d[/tex]

Subtract both equations

[tex]18=a_1+2d[/tex]

[tex]33=a_1+5d[/tex]

[tex]--------\\-15=-3d\\d=\frac{-15}{-3}\\d=5[/tex]

So, we get common difference d = 5

Now finding a_1

Put value of d in equation [tex]18=a_1+2d[/tex]

[tex]18=a_1+2(5)\\18=a_1+10\\a_1=18-10\\a_1=8[/tex]

So, we get a₁ = 12

Now, the explicit equation is:

[tex]a_n=a_1+(n-1)d\\a_n=8+(n-1)5\\a_n=8+5n-5\\a_n=5n+3[/tex]

So, the explicit equation is [tex]\mathbf{a_n=5n+3}[/tex]

Option A is correct option.