Respuesta :
Answer:
[tex]\begin{Vmatrix}1 & 0 & 0& 46/41 &180/41\\0 & 1 & 0&1/41 &-5/41\\0&0 & 1 & -8/41& -42/41\end{Vmatrix}[/tex]
Step-by-step explanation:
From the question we are told that
System of equations given as
x₁ + 3x₂ + x₃ + x₄ = 3;
2x₁ - 2x₂ + x₃ + 2x₄ = 8;
x₁ - 5x₂ + x₄ = 5
Matrix form
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\2 & -2 & 1&2&8\\0&1 & -5 & 1& 5\end{Vmatrix}[/tex] [tex]\begin{Vmatrix}x_1\\x_2\\x_3\\x_4\end{Vmatrix}[/tex]
Generally the echelon reduction is mathematically applied as
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\2 & -2 & 1&2&8\\0&1 & -5 & 1& 5\end{Vmatrix}[/tex]
Add -2 times the 1st row to the 2nd row
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\0 & -8 & -1&0&2\\0&1 & -5 & 1& 5\end{Vmatrix}[/tex]
Multiply the 2nd row by -1/8
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\0 & 1 & 1/8&0&-1/4\\0&1 & -5 & 1& 5\end{Vmatrix}[/tex]
Add -1 times the 2nd row to the 3rd row
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\0 & 1 & 1/8&0&-1/4\\0&0 & -41/8 & 1& 21/4\end{Vmatrix}[/tex]
Multiply the 3rd row by -8/41
[tex]\begin{Vmatrix}1 & 3 & 1&1&3\\0 & 1 & 1/8&0&-1/4\\0&0 & 1 & -8/41& -42/41\end{Vmatrix}[/tex]
Add -1/8 times the 3rd row to the 2nd row
Add -1 times the 3rd row to the 1st row
[tex]\begin{Vmatrix}1 & 3 & 0&49/41&165/41\\0 & 1 & 0&1/41 &-5/41\\0&0 & 1 & -8/41& -42/41\end{Vmatrix}[/tex]
Add -3 times the 2nd row to the 1st row
[tex]\begin{Vmatrix}1 & 0 & 0& 46/41 &180/41\\0 & 1 & 0&1/41 &-5/41\\0&0 & 1 & -8/41& -42/41\end{Vmatrix}[/tex]