Simplify the following
A)
[tex] \sqrt{ \frac{9}{25} } [/tex]
B)
[tex] \frac{ \sqrt{12} }{ \sqrt{3} } [/tex]
Cl
[tex] \frac{ \sqrt{15} }{ \sqrt{3} } [/tex]
WILL MARK AS BRAINLIEST ANSWER​

Respuesta :

Answer:

see the answers ⤵️

Step-by-step explanation:

to understand the solving steps

you need to know about

  • [tex] \sqrt{ \frac{x}{y} } < = > \frac{ \sqrt{x} }{ \sqrt{y} } \\ and \: \\ \sqrt{x} \times \sqrt{y} = \sqrt{xy} [/tex]
  • PEMDAS

let's solve:

[tex]a) \sqrt{ \frac{9}{25} } [/tex]

[tex] \frac{ \sqrt{9} }{ \sqrt{25} } [/tex]

[tex] \frac{3}{5} [/tex]

[tex]b) \frac{ \sqrt{12} }{ \sqrt{3} } [/tex]

[tex] \frac{ \sqrt{12} }{ \sqrt{3} } \times \frac{ \sqrt{3} }{ \sqrt{3} } [/tex]

[tex] \frac{ \sqrt{12 \times 3} }{ (\sqrt{3} )^{2} } [/tex]

[tex] \frac{ \sqrt{36} }{3} [/tex]

[tex] \frac{6}{3} [/tex]

[tex]2[/tex]

[tex]c) \frac{ \sqrt{15} }{ \sqrt{3} } [/tex]

[tex] \sqrt{5} [/tex]