Answer:
13. [tex]D = 18[/tex]
14. [tex]S = (x, y + 6)[/tex]
Step-by-step explanation:
13.
Given
[tex]M = (-8,2)[/tex]
[tex]S = (10,2)[/tex]
Required
Determine the distance between M and S
Distance (D) is calculated using:
[tex]D = \sqrt{(x_2 - x_1)^2+(y_2 - y_1)^2}[/tex]
Where
[tex](x_1,y_1) = (-8,2)[/tex]
[tex](x_2,y_2) = (10,2)[/tex]
[tex]D = \sqrt{(x_2 - x_1)^2+(y_2 - y_1)^2}[/tex]
[tex]D = \sqrt{(10 - (-8))^2 + (2 - 2)^2}[/tex]
[tex]D = \sqrt{(10 +8)^2 + 0^2}[/tex]
[tex]D = \sqrt{18^2 + 0}[/tex]
[tex]D = \sqrt{18^2}[/tex]
[tex]D = 18[/tex]
Hence, the distance between M and S is 18 units
14.
The coordinate of S and P are not given,
So, I'll just use (x,y) for P
i.e.
[tex]P=(x,y)[/tex]
Required
Determine the coordinates of S
If S is 6 units above P, then the coordinates of S is
[tex]S = (x, y + 6)[/tex]
i.e. we add the units to the y coordinate of P.