Respuesta :
Answer:
0.15866 ; 0.0071627
Step-by-step explanation:
Given that:
Mean (m) = 298
Standard deviation (s) = 3
A.) P(x < 295)
Using the relation to obtain the standardized score (Z) :
Z = (x - m) / s
Z = (295 - 298) / 3 = - 1
p(Z < - 1) = 0.15866 ( Z probability calculator)
B.)
Z = (x - m) / s /sqrt(n)
Z = (295 - 298) / 3/sqrt(6) = −2.449489
p(Z < - 2.449) = 0.0071627 ( Z probability calculator)
The probability will be:
(a) 0.15866
(b) 0.007163
Given values are:
Mean,
- m = 298
Standard deviation,
- s = 3
(a)
P(x < 295)
The standardized score will be:
→ [tex]Z = \frac{(x-m)}{s}[/tex]
By substituting the values, we get
[tex]= \frac{(295-298)}{3}[/tex]
[tex]= \frac{-3}{3}[/tex]
[tex]= -1[/tex]
Now,
By using the Z probability calculator, we get
→ [tex]p(Z< -1) = 0.15866[/tex]
(b)
The standardized score will be:
→ [tex]Z = \frac{x-m}{\frac{s}{\sqrt{n} } }[/tex]
By putting the values,
[tex]= \frac{295-298}{\frac{3}{\sqrt{6} } }[/tex]
[tex]= -2.449489[/tex]
Now,
→ [tex]p(Z < -2.449)= 0.007163[/tex]
Thus the responses above are correct.
Learn more about probability here:
https://brainly.com/question/20369155