Respuesta :

Answer:

[tex]P(B) = 0.55[/tex]

Step-by-step explanation:

Given

[tex]P(A\ or\ B) = 0.8[/tex]

[tex]P(A) = 0.4[/tex]

[tex]P(A\ and\ B) = 0.15[/tex]

Required

Find P(B)

In probability, we have:

[tex]P(A\ or\ B) = P(A) + P(B) - P(A\ sd B)[/tex]

Substitute values

[tex]0.8 = 0.4 + P(B) - 0.15[/tex]

Collect Like Terms

[tex]P(B) = 0.8 - 0.4 + 0.15[/tex]

[tex]P(B) = 0.55[/tex]