Given the set of vertices, determine whether parallelogram ABCD is a rhombus, rectangle or square. List all that apply. A(7,-4), B(-1,-4), C(-1,-12), D(7, -12)

a. rhombus c. square, rectangle, rhombus
b. square d. rectangle

Respuesta :

Given:

Vertices of a parallelogram ABCD are A(7,-4), B(-1,-4), C(-1,-12), D(7, -12).

To find:

Whether the parallelogram ABCD is a rhombus, rectangle or square.

Solution:

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using distance formula, we get

[tex]AB=\sqrt{(-4-(-4))^2+(-1-7)^2}[/tex]

[tex]AB=\sqrt{(-4+4)^2+(-8)^2}[/tex]

[tex]AB=\sqrt{0+64}[/tex]

[tex]AB=8[/tex]

Similarly,

[tex]BC=\sqrt{(-1-(-1))^2+(12-(-4))^2}=8[/tex]

[tex]CD=\sqrt{(7-(-1))^2+(-12-(-12))^2}=8[/tex]

[tex]AD=\sqrt{(7-7)^2+(-12-(-4))^2}=8[/tex]

All sides of parallelogram are equal.

[tex]AC=\sqrt{(-1-7)^2+(-12-(-4))^2}=8\sqrt{2}[/tex]

[tex]BD=\sqrt{(7-(-1))^2+(-12-(-4))^2}=8\sqrt{2}[/tex]

Both diagonals are equal.

Since, all sides are equal and both diagonals are equal, therefore, the parallelogram ABCD is a square.

We know that, a square is special case of rectangles and rhombus.

So, parallelogram ABCD is a rhombus, rectangle or square. Therefore, the correct option is c.